
📊 Stock Trading Day Clustering Project

🧠 Overview

🔍 Background & Concepts

🤖 What is Clustering?

📌 Core Concepts

1. K-Means Clustering

2. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

3. Gaussian Mixture Models (GMM)

⚙ Data Processing (Before Clustering)

🔬 Feature Engineering

⚖ Scaling the Data

📉 PCA (Principal Component Analysis)

📚 What is TA?

🔬 Step-by-Step Analysis Process

1. 📥 Data Collection

2. 🧮 Feature Engineering

3. ⚖ Scaling the Data

4. 📉 PCA for Dimensionality Reduction

5. 🔗 Clustering the Data

🧮 Raw Data

📊 Visual Outputs

1. 📈 Cluster Distribution

2. 🌐 PCA Projection

3. 🔄 Feature Pairplot

4. 🔥 Heatmap - Normalized

5. 📈 Average Feature Value Per Cluster

🖥 Using the Streamlit App

🚀 Features

🛠 How to Run Locally

📁 Project Folder Structure

💡 Insights & Learnings

🧠 Overview

This project uses unsupervised machine learning to explore how stock trading days behave. By looking at key features like

returns, volatility, and trading volume, we group similar days together using clustering algorithms like K-Means, DBSCAN, and

GMM. These clusters help identify patterns, such as “volatile high-volume gain days” or “quiet loss days,” which can help

investors and analysts make more informed decisions.

LINK TO WEB APP: https://trade-day-clustering.streamlit.app/

🔍 Background & Concepts

🤖 What is Clustering?

Clustering is an unsupervised machine learning technique used to group similar data points together based on their features,

without prior labels. The goal is to partition data such that points in the same group (cluster) are more similar to each other than

to those in other groups.

https://trade-day-clustering.streamlit.app/

Clustering is like sorting socks after laundry—but you don't know in advance how many types of socks you have. Instead, you

look at characteristics (like color, size, material) and let a program group them based on similarity. In this project, each trading

day is a "sock", and we group them based on things like return, volatility, and volume.

📌 Core Concepts

1. K-Means Clustering

K-Means is a centroid-based clustering algorithm that partitions data into K clusters by minimizing the sum of squared distances

between data points and their assigned cluster center (centroid). It iteratively updates cluster centers until convergence.

Imagine you have a bunch of dots (data points) on a piece of paper. K-Means picks K centers and pulls each dot toward the

closest center. It keeps adjusting the centers until everything is nicely grouped.

2. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

DBSCAN groups together points that are closely packed (points with many nearby neighbors) and marks as outliers the points

that lie alone in low-density regions. It uses two parameters: eps (neighborhood radius) and min_samples (minimum points to

form a dense region).

Think of people at a party. DBSCAN groups people standing close together into groups. If someone is standing alone or far from

others, theyʼre called "noise" or an outlier.

3. Gaussian Mixture Models (GMM)

GMM assumes the data is generated from a mixture of several Gaussian distributions. It uses Expectation-Maximization to assign

each point a probability of belonging to each cluster instead of a hard label.

Instead of assigning each data point strictly to a group, GMM gives each day a probability of belonging to each group.

⚙ Data Processing (Before Clustering)

We generate numerical features to describe each trading day—these are the inputs for clustering. Think of them as coordinates in

a multi-dimensional space representing market behavior.

🔬 Feature Engineering

daily_return (Close - Open) / Open Was the price up or down?

Measures daily % change.

price_range (High - Low) / Open How much price moved during

the day. Reflects range.

volatility Std([Open, High, Low, Close]) A measure of price

"bounciness" during the day.

volume_change Volume[t] / Volume[t-1] - 1 Volume change vs the previous

day.

Feature Formula What it tells us

⚖ Scaling the Data

Scaling standardizes feature values to have a mean of 0 and a standard deviation of 1 using StandardScaler . This ensures that

features with larger ranges donʼt dominate the clustering algorithm.

Like resizing all pictures before printing so they fit equally—no one picture takes over the wall space.

📉 PCA (Principal Component Analysis)

PCA is a dimensionality reduction technique that transforms the original variables into a new set of linearly uncorrelated variables

(principal components), preserving as much variance as possible.

It s̓ like showing a 3D object from the best angle in 2D—so we capture the key patterns without the complexity.

📚 What is TA?

TA (Technical Analysis) is a Python library used to compute indicators derived from historical price and volume data, such as RSI,

MACD, and moving averages.

Think of it as adding smart labels to trading days, like “momentum up” or “volume spike,” helping us better group days by

behavior.

🔬 Step-by-Step Analysis Process

This analysis process was done for NMR stock ticker using K-Means clustering with 5 clusters.

volume_vs_avg Volume / 5-day rolling average Whether today's volume is high

or low compared to recent

days.

rsi RSI (14-day) Momentum indicator. >70 =

overbought, <30 = oversold.

macd MACD (12-26 EMA) Shows bullish/bearish

momentum.

macd_signal MACD signal line (9 EMA of

MACD)

Used for identifying buy/sell

triggers.

RSI Measures momentum—how

strongly price is moving

up/down

>70 overbought, <30 oversold

MACD Difference between short and

long-term moving averages

Detect trend reversals and

momentum shifts

MACD Signal Smoothed MACD used as a

signal line

Triggers buy/sell decisions

Indicator What it Means Why it's Useful

1. 📥 Data Collection

We used Yahoo Finance to download daily stock data for NMR (Nomura Holdings). This included Open, Close, High, Low, and

Volume for each trading day from 2023-01-01 to 2024-12-30.

2. 🧮 Feature Engineering

We calculated eight key features to describe trading behavior.

3. ⚖ Scaling the Data

We standardized all features using StandardScaler so they have the same scale. This prevents large-value features like Volume

from overpowering smaller ones like Return.

4. 📉 PCA for Dimensionality Reduction

PCA reduces complex, multi-dimensional data down to 2D for easy visualization. This helps in plotting clusters on a simple chart.

5. 🔗 Clustering the Data

Based on the selected method (KMeans, DBSCAN, or GMM), trading days are grouped into clusters:

KMeans: Divides days into a set number of clusters (e.g., 3 or 5).

DBSCAN: Finds dense groups and labels isolated points as noise.

GMM: Assigns probabilities to each day for each cluster.

Each cluster gets a human-readable label based on average volume, return, volatility, etc., e.g., 'Volume Trend Up, High Volume,

High Volatility, Moderate Gain'.

🧮 Raw Data

📊 Visual Outputs

1. 📈 Cluster Distribution

Shows how many trading days belong to each cluster.

0 2023-

01-09

3.79 3.84 3.78 3.83 523800 -0.0104

44

0.01566

6

0.0294

39

-0.7267

04

115834

0.0

0.45219

9

1 2023-

01-10

3.75 3.76 3.72 3.75 979700 0.0000

00

0.01066

7

0.01732

0

0.8703

70

116530

0.0

0.8407

28

2 2023-

01-11

3.79 3.80 3.77 3.79 758800 0.0000

00

0.00791

6

0.01258

3

-0.225

477

103870

0.0

0.7305

29

3 2023-

01-12

3.87 3.89 3.81 3.82 765800 0.01308

9

0.0209

42

0.0386

22

0.0092

25

988940

.0

0.7743

64

4 2023-

01-13

3.97 3.97 3.89 3.89 725100 0.0205

66

0.0205

66

0.0461

88

-0.0531

47

750640

.0

0.9659

76

Date Clos

e

High Low Open Volume daily_re

turn

price_r

ange

volatilit

y

volume

_chang

e

volume

5day

avg

volume

_vs_av

g

This bar chart shows how many trading days fall into each cluster. We observe that Cluster 1 dominates, suggesting a “normal”

or typical market behavior that occurs most often. Smaller clusters like Cluster 3 may represent outliers or unusual market

conditions worth deeper investigation.

2. 🌐 PCA Projection

Plots trading days in a 2D space to visualize cluster separation.

The PCA plot reduces our high-dimensional features into two components, allowing us to visually inspect how trading days are

grouped. Distinct cluster separation (e.g., Cluster 3 being far apart) implies that those days have significantly different behaviors

—potentially tied to earnings releases, economic events, or extreme volume surges.

3. 🔄 Feature Pairplot

Shows how features relate to each other within clusters.

These pairplots show how features interact within and across clusters. For instance, higher volatility often aligns with wider price

ranges and sometimes larger volume changes. Clusters with tighter, less varied distributions (e.g., Cluster 1) reflect consistent,

less volatile market days, while scattered patterns (e.g., Cluster 4) reveal erratic behaviors.

4. 🔥 Heatmap - Normalized

Normalized to 0–1 scale to highlight differences across features and clusters.

The normalized heatmap brings all features to a common scale (0–1) for easy comparison. Here, Cluster 0 shows the highest

normalized daily return, while Cluster 3 dominates in volatility and volume change. This view makes it easier to identify each

cluster s̓ defining characteristics regardless of raw magnitude.

5. 📈 Average Feature Value Per Cluster

🖥 Using the Streamlit App

🚀 Features

Select stock ticker, date range, and clustering method.

Set parameters for KMeans, DBSCAN, or GMM.

View and download charts.

Toggle raw data visibility.

Export clustered data as CSV.

cluster

0 0.013 0.021 0.049 0.089

1 0.002 0.011 0.024 -0.091

2 0.000 0.014 0.031 1.250

3 -0.018 0.055 0.135 1.980

4 -0.011 0.018 0.044 0.046

daily_return

price_range volatility volume_change

🛠 How to Run Locally
1. Install dependencies:

2. Launch the app:

The app will open at http://localhost:8501

📁 Project Folder Structure

💡 Insights & Learnings

Unsupervised learning can uncover hidden market patterns.

Volume and return are especially helpful in clustering trading behaviors.

Visual tools like PCA and heatmaps aid in explaining results to non-technical stakeholders.

Streamlit enables an interactive, low-code way to share results.

1 pip install -r requirements.txt

1 streamlit run app.py

1 .

2 ├── app/app.py # Main Streamlit application

3 ├── requirements.txt # Dependencies

4 ├── notebooks/clustening_model.ipynb # Jupyter notebook to rerun analysis

5 └── clustening_model_results.pdf # Jupyter Notebook snapshots

http://localhost:8501/

